TMM 3102: Protein Structure, Function and Disease

 Integrative Structural Biology: Large Protein Complexes (October 21st, 2021)

Jyh-Yeuan (Eric) Lee, Assistant Professor, BMI

uOttawa.ca

(Partially adopted from former lectures by Drs. Jean-François Couture & Patrick Giguère)

Faculté de médecine | Faculty of Medicine

Faculté de médecine Faculty of Medicine

Lecture Outline

1. Why studying large/multi-subunit protein complexes?

- 2. Ways to study large protein complexes
 - X-ray crystallography √
 - Electron microscopy \checkmark
 - Mass spectrometry \checkmark
 - Cross-linking / hydrogen-deuterium (H/D) exchange
 - Computer simulation, NMR, fluorescence, ...

3. Case study

Why studying large/multi-subunit protein complexes?

- Protein structures define protein functions. Yet, a biological process is usually not performed by one single protein.
- Exactly how proteins send signals through their structures remains to be determined.
- Proteins function in ensemble with other protein partners, such signal transduction, transcription, translation, exo/endocytosis, etc.
- Activation/deactivation of individual protein functions requires formation of multi-protein complexes.
- Intracellular environment is very viscous and crowded by proteins and other biological molecules, *i.e.*, the spatial limitation of protein functions.

A multi-disciplinary science that collects diverse expertise from various fields, such as

biochemistry/biophysics, analytical chemistry, cell biology, protein engineering, computer science,

Technique Desc Structural characterization of proteins Common technique Macromolecular crystallography NMR SAXS/SANS Recent advancement Cryo-EM SPA Computational modeling Identification and characterization of protein-protein interactions Common technique Co-IP FRET Recent advancement XL-MS Molecular docking Proximity labeling *Contextualization of protein–protein interactions* Future of ISB Whole-cell cryo-ET (Ziegler et al. CSBJ, 2021) Single-cell cryo-EM XL-MS and cryo-EM SPA

Integrative Structural Biology

Mass Spectrometry (MS) Bs ++++ (\pm) Đ Magnetic \oplus Ð (\pm) field region (+) (\pm) ۶E B out toward 2r viewer Velocity Ionization Accelerating voltage applied selector After ionization, acceleration, Detector and selection of single velocity particles, the ions move into a mass spectrometer region where the radius of the path and thus the postion on the detector is a function of the mass. mEs mv r =qBB_s qΒ

Mass Spectrometry (MS)

Detector

Mass Spectrometry (MS)

(Robinson, PNAS, 2017)

(Calabrese & Radford, Methods, 2018)

Case Study: Epigenetics

(National Institute of Health)

Case Study: Epigenetics

Wrap a fragment of 150bp. Left-handed

H3 associate with H4 more readily

H3-H4 tetramer binds two H2A-H2B dimers

Case Study: Epigenetics

Case Study: Epigenetics by X-ray crystallography

(Jacob et al, Science, 2014; Bergamin et al, Nuclear Acids Res, 2017)

Case Study: Epigenetics by X-ray crystallography

(Bergamin et al, Nuclear Acids Res, 2017)

Case Study: Epigenetics by cryo-EM

(Qu et al, Cell, 2018)

Case Study: Epigenetics by chemical reporters

(Li & Li, Acc Chem Res, 2021)

Case Study: Epigenetics by NMR, SAXS & cross-linking

- * SAXS: small-angle X-ray scattering
- * MLL: mixed lineage leukemia

(Kaustov et al, Nucleaic Acids Res, 2019)

Case Study: G protein signaling

GPCR: G protein-coupled receptor

(Li et al, Nature, 2002)

Case Study: G protein signaling

Case Study: GPCR by X-ray crystallography

а

X-ray crystallography Cryo-EM

(Du et al, Cell, 2019)

Mass spectrometry (HDX-MS & HRF-MS)

- * HDX: hydrogen/deuterium exchange
- * HRF: hydroxyl radical mediated protein footprinting

A Surface labeling followed by mass spectromery analysis

Proposed Model

Outlook: in situ structural characterization

(Ziegler et al, CSBJ, 2021)

Outlook: Integrative Structural Biology Strategies

Bottom-up integrative structural biology

Top-down integrative structural biology