

Lecture 9, BCH 8102, 2021 Winter

Paculté de médecin

Lipid metabolism and drug resistance: ABC transporters and structural biology Jyh-Yeuan (Eric) Lee, PhD, Assistant Professor Department of Biochemistry-Microbiology and Immunology

med.uOttawa.ca

Lecture Outline

Part I: ABC Transporters

- a) From bacteria to mammals
- b) The engine
- c) The transport
- d) A long way to structural understanding

Part II: Structural studies of multidrug resistance transporters ABCB1 (P-glycoprotein)

Part III: Structural studies of lipid transporters ABCG5/G8 (Sterolin)

uOttawa.ca

Part I: ABC TRANSPORTERS

ATP-Binding Cassette (ABC) Proteins

Transmembrane domain (TMD)

Nucleotide-binding domain (NBD)

Full transporters

Non-transporters

Half transporters Homo-dimer Hetero-dimer

ABC coupled transport: a simple idea

Evolutionary History of ABC Proteins

(Srikant, FEBS Lett, 2020)

Evolutionary History of ABC Proteins

(Srikant, FEBS Lett, 2020)

Human ABC proteins: 48 members, 44 transporters

		Subfamily	Human ABC proteins	Physiological role (known and probable)	Disease	Structure	Select citation(s)
	Ā	3C1 B: multidrug resistance, MDR, 11 members	ABCB1 ABCB2 ABCB3	Efflux of xenobiotics Peptide transport associated with antigen processing	Multidrug resistance Immune deficiency	Kim and Chen 2018 Oldham et al. 2016	Riordan et al. 1985 Deverson et al. 1990; Monaco et al. 1990; Spies et al. 1990;
			ABCB4	Phospholipid excretion into bile	Progressive familial intrahepatic		Trowsdale et al. 1990 Van der Bliek et al. 1987
			ABCB5	Efflux of xenobiotics	cholestasis type in		Allikmets et al. 1996
			ABCB6 ABCB7	Porphyrin transport Transport substrate involved in the mitochondrial iron homeostasis	X-linked sideroblastic anemia with ataxia		Mitsuhashi et al. 2000 Savary et al. 1997
			ABCB8	Mitochondrial iron and glutathione export; efflux of xenobiotics			Allikmets et al. 1996
			ABCB9 ABCB10	Peptide translocation to lysosomes Involved in heme biosynthesis		Shintre et al. 2013	Zhang et al. 2000
			ABCB11	Bile salt secretion into bile	Progressive familial intrahepatic cholestasis type II		Strautnieks et al. 1998
A Transporters • B, C, D • A, G	ABC1	C: multidrug resistance- associated protein, MRP, 12 members	ABCC1 ABCC2	Multispecific organic anion transport Renal and biliary elimination of organic anionic substrates	Unberdans (ype fr Multidrug resistance Dublin-Johnson syndrome	Martin et al. 2017a	Cole et al. 1992 Büchler et al. 1996
			ABCC3	Organic anion transport			Kiuchi et al. 1998
			ABCC4 ABCC5	Nucleotide transport, antiviral drug enfux Nucleotide and glutamate conjugate transport			Jedlitschky et al. 2000; Wijnholds et al. 2000
			ABCC6 ABCC7	Transport of organic anions Epithelial chloride channel	Pseudoxanthoma elasticum Cystic fibrosis; congenital bilateral absence of the vas deferens	Liu et al. 2017	Kuss et al. 1998 Riordan et al. 1989
			ABCC8	Modulation of associated potassium channels	Hyperinsulinemic hypoglycemia of infancy	Martin et al. 2017a	Aguilar-Bryan et al. 1995
			ABCC9 ABCC10	Efflux of xenobiotics	Cantu syndrome		Chutkow et al. 1996 Allikmets et al. 1996
			ABCC11	Anionic hydrophobic solute transport	Resistance to anticancer and antiviral nucleoside based drugs		Lagasse and Clerc 1988
			ABCC12	Unknown	nucleoside based unugs		Tammur et al. 2001
		D: adrenoleukodystrophy related protein, ALD, 4	- ABCD1 ABCD2	Long and very long chain fatty acid transport	Adrenoleukodystrophy Zellweger syndrome Tangier disease: familial high-density Qi lipoprotein deficiency Neonatal surfactant deficiency Stargardt macular degeneration; cone-rod dystrophy Harleauin ichthvosis		Mosser et al. 1993 Holzinger et al. 1999
		members	ABCD3 ABCD4	Branched chain fatty acid transport Possible role in vitamin B12 transport		7 Qian et al. 2017	Kamijo et al. 1990 Holzinger et al. 1997
		3C2 A: 12 members	ABCA1	Cholesterol and phospholipid transport			Luciani et al. 1994
			ABCA2 ABCA3	Phospholipid transport Phospholipid transport			Connors et al. 1997
			ABCA4	Transport of retinoid			Allikmets et al. 1997
			ABCA5 ABCA6	Nucleotide and glutamate conjugate transport Role in macrophage lipid homeostasis			Kaminski et al. 2002
			ABCA7	Phospholipid and sphingolipid transport Cholesteral and taurocholate transport			Kaminski et al. 2000
			ABCA9	Role in macrophage lipid homeostasis			Piehler et al. 2002
			ABCA10 ABCA12	Role in macrophage lipid homeostasis Sphingolipid transport			Wenzel et al. 2003 Annilo et al. 2002
		C: five members	ABCA13	Unknown Cholosterol and phospholipid transport	1		Prades et al. 2002
		G. live members	ABCGI	cholesteror and phospholipid transport			et al. 1996
			ABCG2	Efflux of xenobiotics	Multidrug resistance	Taylor et al. 2017	Allikmets et al. 1998; Doyle et al. 1998; Miyake et al. 1999
			ABCG4	Cholesterol transport			Annilo et al. 2001; Oldfield et al. 2002
			ABCG5	Cholesterol and plant sterol efflux	β-Sitosterolemia	Lee et al. 2016	Berge et al. 2000
Non-transpor	ters	E: one member	ABCE1	Role in translation initiation and ribosome recycling		Preis et al. 2014; Shao et al. 20161.1	Wolkoff et al. 1985
• E. F	L	F: three members	ABCF1 ABCF2 ABCF3	Regulation of innate immune response Role in cell volume regulation Probable role in cell proliferation		2010114	Richard et al. 1998 Allikmets et al. 1996

yeast, and rabbit homologs, respectively.

Crystal structure of HisP

- ATP-binding subunit
- Right structure, wrong model

(Hung et al, Nature, 1998)

Crystal structure of Rad50

- ATP-binding cassette
- Right structure, right model

(Hopfner et al, Cell, 2000)

Crystallographic dimer ≠ biological dimer

(Yuan et al, J Biol Chem, 2001)

ATP sandwich model

Crystal structure of MsbA

- Full transporter structure
- Wrong model

(Chang & Roth, Science, 2001; retracted 2006) Crystal structure of BtuCD

- Full transporter structure
- Correct model

(Locher et al, Science, 2002)

ABC-coupled transport: a simple idea

(Locher, Nat Struct Mol Biol, 2016)

ABC-coupled transport: not that simple!

ABC-coupled transport: not that simple!

(Thomas et al, FEBS Lett, 2020)

So, ...

- High-degree of structural diversity in the transmembrane domains of ABC transporters.
- The structural variability (likely) determines the functional diversity of ABC transporters.
- Transport mechanism is (likely) individually distinct.

Part II: STRUCTURAL STUDIES OF MULTIDRUG RESISTANCE TRANSPORTERS

Multidrug Resistance (MDR) in Mammalian Cells

Biochimica et Biophysica Acta, 455 (1976) 152–162 © Elsevier/North-Holland Biomedical Press

BBA 77508

A SURFACE GLYCOPROTEIN MODULATING DRUG PERMEABILITY IN CHINESE HAMSTER OVARY CELL MUTANTS

R. L. JULIANO^{a, c} and V. LING^{b, c}

^aResearch Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, ^bThe Ontario Cancer Institute, 500 Sherbourne Street, Toronto, Ontario and ^cThe Department of Medical Biophysics, University of Toronto, 500 Sherbourne Street, Toronto, Ontario (Canada)

(Received April 23rd, 1976)

Multidrug Resistance (MDR) in Mammalian Cells

[CANCER RESEARCH 43, 4413-4419, September 1983]

Daunorubicin-resistant Chinese Hamster Ovary Cells Expressing Multidrug Resistance and a Cell-Surface P-Glycoprotein¹

Norbert Kartner,² Michael Shales,³ John R. Riordan, and Victor Ling

Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto M4X 1K9 [N. K., M. S., V. L.], and Research Institute, The Hospital for Sick Children and Departments of Biochemistry and Clinical Biochemistry, University of Toronto, Toronto M5G 1X8 [J. R. R.], Ontario, Canada

> Breast Cancer Research and Treatment, 4, 89–94 (1984) © 1984, Martinus Nijhoff Publishers. Boston. Printed in the Netherlands

6th Annual San Antonio Breast Cancer Symposium

Multidrug resistance

V. Ling, J. Gerlach, and N. Kartner Department of Medical Biophysics, University of Toronto and the Ontario Cancer Institute, 500 Sherbourne Street, Toronto, Ontario, Canada M4X 1K9

P-glycoprotein (Pgp/MDR1/ABCB1): the first mammalian ABC transporter reported.

(phase contrast)

(fluorescence w/ Ab)

(Ling et al, Breast Cancer Res Treat, 1984)

P-glycoprotein (Pgp/MDR1/ABCB1): the first mammalian ABC transporter reported.

(Ling et al, Breast Cancer Res Treat, 1984)

MDR1 (ABCB1), MRP1 (ABCC1) and BCRP (ABCG2)

Finne 1. Consul a sharing of some days and taken The still of the first start that the first

(Liu et al, Oncotarget, 2016)

MDR1 (ABCB1), MRP1 (ABCC1) and BCRP (ABCG2)

(Gomez-Zepeda et al, Pharmaceutics, 2019)

(Senior et al, FEBS Lett, 1995)

(Sharom, Front Oncol, 2014)

Low-resolution EM models:

(Rosenberg et al, J Biol Chem, 1997)

(Lee et al, J Biol Chem, 2002)

(Aller et al, Science, 2009)

(Szöllősi et al, Biochim Biophys Acta Biomembr, 2018)

Conformational Landscape of P-glycoprotein

(Frank et al, Mol Pharmacol, 2016)

Conformational Landscape of P-glycoprotein

Dynamics of P-glycoprotein

hydrogen-deuterium exchange mass spectrometry (HDX-MS)

(Kopcho et al, Sci Rep, 2019)

Dynamics of P-glycoprotein

(Dastvan et al, Science, 2019)

Double electron electron resonance (DEER) spectroscopy

P-glycoprotein Inhibition-based Drug Discovery

A wide variety of chemically diverse compounds could reverse MDR in resistant cancer cells *via* inhibition of P-gp function/expression.

(Dong et al, Drug Resist Updat, 2020)

Beyond P-glycoprotein

ABCG2/BCRP/MXR

ABCC1/MRP1

(Robey et al, Nat Rev Cancer, 2018)
Part III: STRUCTURAL STUDIES OF LIPID TRANSPORTERS

Canalicular ABC Transporters

(Saad et al, Int J Mol Sci, 2021)

ABC Transporters in the Brain

(Pereira et al, J Alzheimers Dis, 2018)

Transporting Cholesterol (A Simple View)

Cholesterol: a Risk Factor of Cardiovascular Diseases

ABCG5/G8: patients, genetics, animal model

ABCG5/G8: human nutrition

ABCG5/G8: patients

Sitosterolemia

(Bhattacharyya & Conner, 1974, JCI)

14 patients:

	Healthy	Sitosterolemi a
Sitosterol (mg/dL)	0.3 ± 0.3	35 ± 16 (50-120x)
Cholesterol (mg/dL)	187 ± 29	258 ± 29

(Salen et al, J Lipid Res, 1985)

ABCG5/G8: genetics

Autosomal recessive & rare genetic disorder

(Berge et al, 2000, Science; Lee et al, 2001, Nat Genet; Lu et al, 2001, AJMG)

ABCG5 and ABCG8 are half ABC transporters.

ABCG5/G8: genetics

ABCG5/G8: animal model

-/-+/+ (Yu et al, 2002, PNAS)

(Graf et al, 2003, JBC)

ABCG5/G8: animal model

в

Functional asymmetry

	Walker A	Q-loop	C-loop	Walker B	D-loop	Switch
	G8	G8	G5	G8	G5	G8
Human	GSSGCGRA	VRQHN	ISTGE	ILILDE	TGLD	SLHQP
Mouse	GSSGCGRA	VRQHD	ISSGE	ILILDE	TGLD	SLHQP
Cow	GSSGCGRA	VRQHD	ISHGE	ILILDE	TGLD	SIHQP
Opossum	GSSGYGKS	VRQHD	ISNGE	ILILDE	TGLD	SLHQP
Chicken	GSTAGGKT	VRQDD	ISGGE	ILILDE	TGLD	SLHQP
Frog	GNTGCGKT	VRQDD	ISSGE	ILILDE	TGLD	SIHQP
Zebrafish	GSSGCGKT	VRQDD	ISGGE	ILILDE	TGLD	SVHQP
	G5	G5	G8	G5	G8	G5
Human	GSSGSGKT	VLQSD	LSGGE	VMLFDE	SGLD	TIHQP
Mouse	GSSGSGKT	VLQSD	VSGGE	VMMLDE	SGLD	TIHQP
Cow	GSSGSGKT	VLQSD	VSGGE	VMLFDE	SGLD	TIHQP
Opossum	GSSGSGKT	ALQNE	VSGGE	VMLFDE	SGLD	TIHQP
Chicken	GNSGSGKT	VPQND	ISGGE	VMLLDE	SGLD	TIHQP
Frog	GNSGSGKT	VLQHD	VSGGE	IILLDE	SGLD	SIHQP
Zebrafish	GNSGSGKT	VLQSD	VSGGE	VILLDE	SGLD	TIHQP
CONSENSUS	GXXGXGKS/T	XXQXX	φSGGQ	φφφφ	S/TXLD	ххнхх

(Zhang et al, 2006, JBC; Wang et al, 2011, JBC)

Large-scale Purification of Human G5G8

Tandem Affinity Chromatography: (*Pichia pastoris* yeast)

3C: 3C cleavage site

CBP: calmodulin-binding peptide

Stable and Monodisperse G5G8

Optimization of Protein Preparation

Bicelle Crystallization (Lipid Bilayers)

Optimization of Crystal Growth

Single-wavelength Anomalous Diffraction (SAD)

(Lee et al, Nature, 2016)

Model Building for the G5G8 Structure

Merge: 19 datasets (least amorphous) (Collect: ~200 native datasets)

Space group	I 222		
a, b, c (Å)	173.6, 224.8, 253.3		
Resolution (Å)	50-3.9 (3.93-3.9)		
R _{sym} or R _{merge}	16.1 (NA)		
<i>/<σI></i>	8.8 (0.15)		
Completeness (%)	99.4 (84.2)		
Redundancy	18.9 (2.5)		
Definement			

Kennement		
Resolution (Å)	25-3.94	
No. reflections	34889	
Rwork/ Rfree	24.5 / 32.9	
No. atoms		
Protein	18151	
R.m.s deviations		
Bond lengths (Å)	0.010	
Bond angles (°)	1.64	

ABCG5 and ABCG8 share high structural similarity.

Structural similarity:

TMD: transmembrane domain NBD: nucleotide-binding domain ECD: extracellular domain CnH: connecting helix CpH: coupling helix

RMSD (Cα) ~ 2Å (~28% sequence identity)

Triple Helical Bundle: Connecting the ATP-Binding Cassette to the Transmembrane Domain

Triple Helical Bundle: Connecting the ATP-Binding Cassette to the Transmembrane Domain

The TMD polar relay connects the triple helical bundle to the TMD.

TMD Polar Relays: a General Feature?

Polypeptide processing and secretion transporter:

(Lin et al, Nature, 2015)

Maltose transporter:

(Oldham et al, Nature, 2007) (Oldham & Chen, Science, 2011)

(Lee et al, Nature, 2016)

Co-Evolution Analysis

How do sterols move across the lipid-bilayer membranes on the TMD?

Vestibules at the TMD-membrane interface

How do sterols move across the lipid-bilayer membranes on the TMD?

(Lee et al, Nature, 2016)

(Ranganath & Tanuja, 1999) "Teaching and learning genetics with Drosophila. 2. Mutant phenotypes of Drosophila melanogaster"

		TMH5		
G5(Homo sapiens)	527	PNIVNSVVALLSIAGVLVGSGFLRN	551	
G5(Danio rerio)	531	PNMVNSGVALLNIAGIMVGSGFLRG	555	
G8(Homo sapiens)	556	FHMASFFSNALYN-SFYLAGGFMIN	579	
G8(Danio rerio)	537	LQTSSFMGNALFT-VFYLTAGFVIS	560	
White	570	TSMALSVGPPVII-PFLLFGGFFLN	593	
Brown	559	DKMASECAAPFDL-IFLIFGGTYMN	582	
Scarlet	550	VPLAMAYLVPLDY-IFMITSGIFIQ	573	

Location of the residues with the disease-causing missense mutations of sitosterolemia.

Color: conserved (multiple sequence alignment (MSA) value \geq 7) White: less/non-conserved (MSA < 7)

Disease-causing mutations cluster in the conserved functional domains in G5G8.

Trajectory of Domain Movement

Molecular Dynamics Simulation

Inward movement (CpH/CnH/E-helix bundle) Upward movement (TM helices)

Trajectory of Domain Movement

(Zein et al, Biochem Soc Trans, 2019)

Using disease mutations to gain mechanistic understanding

CHS-Stimulated ATPase Activity of ABCG5/G8

ATP Dependence of ABCG5/G8

CHS Dependence of ABCG5/G8

	V _{max} (nmol/min/mg)	K _M (CHS) (mM)	k _{cat} a (s ⁻¹)	k _{cat} /K _M (M ⁻¹ s ⁻¹)
WT	702.9 ± 50.7	0.8	1.74	2.2x10 ³
G5-E146Q	210.0 ± 33.2	1.13	0.52	0.46x10 ³
G8-R543S	237.1 ± 33.4	2.38	0.59	0.25x10 ³
G5-A540F	99.8 ± 11.4	0.70	0.25	0.36x10 ³

A Catalytic Model of ABCG5/G8

Beyond ABCG5/G8

ABCA4 - phospholipid import

ABCB4 - phospholipid export

(Qian et al, Cell, 2017)

(Liu et al, eLife, 2021)

(Olsen et al, Nat Struct Mol Biol, 2020)

Transmembrane Domain of ABC Cholesterol Transporters: a Pathogenic Hot Spot

Pathogenic residues: G5G8 (red), A1 (green)

(Xavier et al, Biochem Cell Biol, 2019)

Transmembrane Domain: the Dynamic Nature (Probably at an ATP-Prehydrolytic state)

(Xavier et al, Biochem Cell Biol, 2019)