# TMM 3102: Protein Structure, Function and Disease

 Structural Biology Methods: Molecular Dynamics Simulation (October 7<sup>th</sup>, 2021)

Jyh-Yeuan (Eric) Lee, Assistant Professor, BMI

(Partially adopted from former lectures by Dr. Maria Musgaard)

Faculté de médecine | Faculty of Medicine

uOttawa.ca



Faculté de médecine Faculty of Medicine

#### **Importance: Static v.s. Dynamic**



(https://digitos.io/benefits-of-dynamic-digital-signage-over-static-signage/)

#### **Importance: Static v.s. Dynamic**



Dynamics of outward-facing (OF) state of Pgp in membrane



(Verhalen et al, Nature, 2017)

# **Bridging the Gap**

Protein function

- Functional data
- Electrophysiology
- Substrate transport
- ...
- High resolution in time

#### Protein structure

- X-ray
- NMR
- Cryo-EM
- ~ "snapshots"
- High resolution in space



#### **Brief History**

 First MD study of proteins published in 1977 ~60 residues, no solvent, ~9 ps

• 2019: full organelles, 139 million atoms, 0.5  $\mu$ s

- Factors:
  - more structures determined
  - better algorithms
  - faster computer







(Cell, 2019)

# Molecular Dynamics (MD): idea

- Classic mechanics (thinking of "Newton's laws of motion")
- Metaphor:

If cycling at 15 km/h by Canal Rideau; keep a constant acceleration:

- Predict how long to reach uOttawa main campus.
- Predict where you are in 5 minutes.
- Do the same for all atoms in a protein system

#### Molecular Dynamics (MD): idea

Going to the next position:

- $r(t+\Delta t) = r(t) + \Delta t * v(t) + 1/2[\Delta t^2 * a(t)]$ 
  - r(t): position at "t" r(t+ $\Delta$ t): position after  $\Delta$ t v(t): velocity a(t): acceleration

#### Molecular Dynamics (MD): idea

**Acceleration:** 

$$F = m * a$$

 $F = -\Delta U / \Delta r$ 

If we know U (potential energy), then we can calculate the force and the acceleration on each atom.

#### Molecular Dynamics (MD): workflow

In general, how do we do MD simulation?

- a. Find the coordinates of a known protein model from the database.
- b. Choose a force field to generate energy potential for further calculation.
- c. Calculate the force that results from the theoretical potential energy.
- d. Find out how molecules speed up with the obtained force.
- e. Calculate the speed of the molecule and where the protein move into.



#### Molecular Dynamics (MD): workflow



Another way to see the MD workflow:

- a. Find a model template and artificially add necessary ingredients that suit the physiological condition of the target protein. This includes protonation states, salts, water, etc.
- b. Prepare the simulation system by selecting the best protocol, aka force field.
- c. Run the simulation using a cluster of computers.
- d. Process the data and predict the where the segment of interest moves to.

What determines "force field"?

• Atoms: different in size, softness, mass, charge, ...

• Bonds: different in lengths, stiffness, ...

• Electrons: implicitly accounted for covalent bonds.

What is a force field used for?

- Used for large molecules or conformational studies
- Not used to break or form chemical bonds
- Empirical, so no one is most correct.
- Requires:
  - Energy equation to describe U as a function of atomic coordinates
  - Constant parameters to be used in the energy equation
  - Atom types to establish constant parameters, charges, masses, etc.

Selection of force field is like deciding what kind of potential energy to use:

- a. Covalent bonds & bond angles
- b. Torsion angles
- c. Van der Waals interaction
- d. Electrostatic force / charge-charge interaction



#### Michael Levitt, Nobel Lecture 2013

- Do's and Don'ts
  - Never compare energies from different force fields, unless absolute energy is known
  - Never mix parameters, unless tested
  - Do simulations in the conditions similar to those used to obtain the force field
  - For new ligands, need a full set of parameters (all you can)

#### Molecular Dynamics (MD): time scale

# **Biological timescales**



Kumar and Balbach, Biochim. Biophys. Acta 2015

- Simulation Δt: 1-2 fs
  Too fast:
  - Too slow:
  - Good



 => 0.5 to 1 million steps to reach 1 ns (!)

# Molecular Dynamics (MD)



## **Structural Determination** *in silico*



Structural and dynamic studies: Studying conformational flexibility and stability

(Hollingsworth & Dror, Neuron, 2018)

# **Structural Determination** *in silico*

Perturbations: Observe response following controlled change to system



(Hollingsworth & Dror, Neuron, 2018)

## **Structural Determination** *in silico*



(Hollingsworth & Dror, Neuron, 2018)

# **Molecular Dynamics (MD)**

- Advantages
  - High resolution in space and time
  - Precise simulation conditions: conformations, ± ligands, ...
  - Cheap: mutations, protein-ligand, protein design, ...
  - Structure-function relationship
- Limitations
  - Validation: need experimental data
  - Timescale and sampling
  - Quality of starting structures
  - Force fields
  - No bond making/breaking, as it depends on protonation states

#### **Case Study: P-glycoprotein (drug-resisance)**



(Pan & Aller, Sci Rep, 2015)

#### **Case Study: P-glycoprotein (drug resistance)**



(Verhalen et al, Nature, 2017)

#### Case Study: ABCG5/G8 (sterol efflux)



#### **Case Study: ABCG5/G8 (sterol efflux)**



(Xavier et al, IJMS, 2020)

#### **Case Study: ABCG5/G8 (sterol efflux)**



(Xavier et al, IJMS, 2020)